
1. Introduction
Clouds significantly influence the global climate system, notably impacting the surface energy and mass 
balances through radiative and precipitation processes (Stephens, 2005). Aerosol perturbations alter cloud 
microphysics through indirect and semidirect effects. For example, increased cloud condensation nucleus 
(CCN) concentrations result in elevated cloud droplet concentrations (Nl). If total condensate mass does 
not change, increased Nl results in decreased cloud droplet size, enhancing cloud albedo (Quaas et al., 2020; 
Twomey, 1976) and longwave emissivity for optically thin clouds (Garrett & Zhao, 2006; Lubin & Vogel-
mann, 2006). Aerosols may also impact cloud lifetime through alteration of precipitation processes (Albre-
cht, 1989), though recent studies (Gryspeerdt et al., 2019; Malavelle et al., 2017; Rosenfeld et al., 2019; Toll 
et al., 2019; Trofimov et al., 2020; Wood, 2007) show limited relationships between liquid water path (LWP) 
and aerosol concentration, suggesting system buffering (Stevens & Feingold, 2009). Challenges associated 
with quantifying these aerosol-cloud effects contribute significantly to uncertainties in understanding the 
climate system, in particular in the Arctic (Engelmann et al., 2020; Schmale et al., 2021; Zamora et al., 2018).

At high latitudes, frequent occurrence of mixed-phase clouds (de Boer et  al.,  2009; Shupe,  2011; Shupe 
et al., 2005) further complicates aerosol-cloud relationships (Korolev et al., 2017). Ice in these clouds acts as 
a cloud water sink (Morrison et al., 2012), and increased ice nucleating particle (INP) concentrations reduce 
cloud liquid water through the Wegener-Bergereon-Findeisen process (Korolev, 2007). This effect and the 
challenges associated with correct representation of ice microphysics in models wreak havoc on simulation 
of mixed-phase clouds (Klein et al., 2009; Lohmann, 2002; Morrison et al., 2005; Sulia & Harrington, 2011; 

Abstract Cloud condensation nucleus control alter cloud solar albedo through cloud droplet size. 
Here, we leverage anthropogenic emissions at the North Slope of Alaska as a natural laboratory to 
study relationships between aerosols and Arctic liquid-containing clouds. Averaging 14 years of MODIS 
observations, we found a reduction in temporally averaged cloud effective radius ( er ) of up to 1.0 μm 
related to localized pollution. Pronounced regional gradients in cloud frequency of occurrence and liquid 
water path prohibit the detection of potential changes of these variables. Observed changes of er  alter 
radiative fluxes and increase cloud-reflected shortwave radiation by up to 0.8 W m−2 in the Prudhoe 
Bay area for the period covered by observations (April–September). Due to the frequent occurrence of 
liquid-containing clouds, this implies that enhanced local emissions in Arctic regions can impact climate 
processes.

Plain Language Summary The interactions between aerosols and clouds are still not fully 
understood despite their importance for the Earth's weather and climate. Cloud condensation nuclei 
(CCN) are a type of aerosol particles that control cloud droplet size and the brightness of clouds. Their 
impact on other cloud properties is unclear. Here, we leverage industrial emissions at the North Slope 
of Alaska as a natural laboratory to study relationships between aerosols and Arctic liquid containing 
clouds. We found a notable reduction in cloud droplet size, but strong local gradients prohibit quantifying 
an impact on other cloud properties. The change in cloud droplet size is sufficient to make the clouds 
brighter. Because the frequent occurrence of liquid-containing clouds in the Arctic, this shows a potential 
impact of local industrial emissions on climate processes.
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Yang et al., 2015). Simultaneously, liquid droplet characteristics affect ice crystal properties through precipi-
tation process such as riming (e.g., Borys et al., 2003; Hallett & Mossop, 1974), meaning CCN concentrations 
also influence precipitation, cloud lifetime and radiative effects (Norgren et al., 2018). The presence of liq-
uid water may even be a prerequisite for ice formation at moderate temperatures (de Boer et al., 2011), and 
increased concentrations of large drop sizes have been associated with ice production (Lance et al., 2011; 
Rangno & Hobbs, 2001). Recent modeling work to untangle these competing effects concluded that INP 
perturbations dominate proportional increases in CCN (Solomon et al., 2018).

Statistical analysis across the seasonal cycle of Arctic aerosol properties provides opportunities for un-
derstanding key relationships (Coopman et al., 2018; Garrett & Zhao, 2006; Zamora et al., 2017) but the 
quantification of aerosol influences on clouds is additionally muddied by the conflation of these effects 
with meteorological drivers (i.e., changes in moisture content and dynamics, Feingold et al., 2016; Gry-
speerdt et al., 2016; Rosenfeld et al., 2019; Sena et al., 2016). To circumvent this issue, Arctic ship emissions 
are used as a natural laboratory (Gilgen et al., 2018; Possner et al., 2017), but are limited in extent and 
occurrence.

In this study, the natural laboratory concept is expanded by investigating aerosol influences on clouds using 
surface- and satellite-based observations from Northern Alaska. Petroleum extraction in and around the 
Prudhoe Bay Oilfield has resulted in continuous release of anthropogenic emissions over the past several 
decades with anthropogenic sulfur dioxide emissions of 17.37 kt/year (Klimont et al., 2017). These rates 
are similar to those observed at mid-latitudes, even though only a small area is impacted at the North Slope 
of Alaska (Figure  1). Localized aerosol gradients from these emissions have been observed by research 
aircraft (Creamean et al., 2018) and linked to increased lN  (Hobbs & Rangno, 1998) and reduced er  (Maahn 
et al., 2017). In combination with decreased aerosol transport from lower latitudes (Quinn et al., 2009), 
the role of local emissions in controlling cloud properties could be increased due to higher susceptibility 
of cleaner clouds (Platnick & Twomey, 1994). In addition to localized aerosol sources, the North Slope of 
Alaska features flat terrain and limited spatial variability in meteorology: surface measurements of tem-
perature, humidity, and surface pressure at Oliktok Point and Utqiaġvik (formerly Barrow) are correlating 
at 0.96, 0.95, and 0.97, respectively, according to data recorded at the Department of Energy Atmospheric 
Radiation Measurement (DOE ARM) sites (Holdridge & Kyrouac, 1993). For Utqiaġvik, Sedlar et al. (2021) 
found that cloud formation and dissipation is mostly controlled by synoptic events. This results in a favora-
ble setting with limited confounding factors (Grandey & Wang, 2019; Sena et al., 2016) in which to evaluate 
aerosol-cloud interactions. Leveraging two decades of observations, we demonstrate statistically significant 
aerosol-based modification of cloud properties over the Prudhoe Bay Oilfield, similar to the case shown in 
Figure 2 where—in comparison to adjacent areas—more overcast clouds, increased cloud brightness, and 
decreased cloud er  are seen.

2. Data and Methods
We analyzed MODIS (Moderate Resolution Imaging Spectroradiometer) swaths collected between 
04/2006 and 12/2019 from the Terra and Aqua satellite cloud products (MOD06L2, MYD06L2, collection 
6, Platnick & Ackerman, 2015a; Platnick & Ackerman, 2015b). The MODIS products were nearest-neigh-
bor gridded to a 2  km resolution, which greatly expands the data set in comparison to the published 
MODIS cloud products with daily resolution because multiple daily overpasses are available at high lat-
itudes. To quantify the impact of localized emissions, we selected a Prudhoe Bay region for further anal-
ysis that includes almost all oil wells and is slightly extended downwinds (insert Figure 1, orange box) 
in accordance with the predominant wind direction being from the East (see wind rose in Figure 1). To 
allow comparisons, we selected a reference region between Utqiaġvik and Prudhoe Bay with similar prop-
erties with respect to the number of land pixels, proximity to the ocean, and elevation (insert Figure 1, 
green box).

To minimize contamination in connection with known deficiencies in the retrieval algorithm, only those 
14,755 overpasses were analyzed that feature satellite viewing zenith angles (VZA) less than 56° (Maddux 
et al., 2010) and solar zenith angles (SZA) less than 65° (Grosvenor & Wood, 2014; Khanal et al., 2020) with 
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the latter limiting the investigated time period to April–September. Also, cloud observations with small 
optical thickness ( ) are know to be unreliable (Goren et al., 2018; Sourdeval et al., 2015) and only clouds 
with   greater than five were included in the analysis. Additionally, the MODIS single layer flag is used to 
remove multi layer clouds to attempt to limit analyzed clouds to those impacted by localized pollution. This 
analysis focuses on the liquid-containing clouds as identified by the MODIS cloud phase flag. This removes 
only 4%–7% of the clouds in our data set (see Text S1), because most ice clouds are already removed by the 
optical thickness threshold. Due to deficiencies of the standard MODIS retrieval for identifying clouds over 
bright surfaces, the standard retrieval is only applied to pixels without surface snow (based on the Nation-
al Ice Center's Interactive Multisensor Snow and Ice Mapping System (IMS) Daily Northern Hemisphere 
Snow and Ice Analysis at 4 km Resolution, Ramsay, 1998; Helfrich et al., 2007; National Ice Center, 2008, 
updated daily) and a retrieval developed for use over bright surfaces using the 1.6 and 2.1 μm channels 
(Platnick et al., 2001) is applied otherwise. Our analysis is limited to clouds occurring in pixels over land 
surfaces only due to the potential impacts of inhomogeneous sea ice surfaces on cloud property retrievals. 
Pixels containing ocean or lakes were removed to ensure homogeneous surface properties. Also data with 
surface elevation higher than 100 m above sea level has been removed to minimize interference from oro-
graphic lifting processes.

From the MODIS products, cloud liquid droplet effective radius ( er ) and liquid water path (LWP) were used 
for further analysis. Cloud frequency of occurrence (CFO) is estimated by the ratio of pixels with identified 
clouds (i.e.,   5) to the number of total observations after removal of data with too large SZA or VZA as 
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Figure 1. Yearly sulfur dioxide emissions based on an inventory by Klimont et al. (2017) for the northern hemisphere 
and the study region (insert). The insert shows also isolines for height above sea level (gray) and a wind rose for the 
925 hPa level based on ERA5. The green dots correspond to oil wells active in March 2017, the green and orange boxes 
indicate the the reference region and the Prudhoe Bay region, respectively.
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discussed above. Only data points with identified clouds are considered when calculating mean er  and mean 
LWP. A potential change in upwelling shortwave radiation ( SW ) is estimated from the difference in albe-
do  C combined with the downwelling shortwave radiation at the surface ( SW ) and the appropriate CFO 
(Charlson et al., 1992; Meskhidze & Nenes, 2006):

     SW SW CFO C (1)

here, SW  is derived from monthly clouds and the Earth's Radiant Energy System (CERES) observations on 
Terra. Monthly values for liquid cloud frequency CFO are estimated using the criteria outlined above except 
the single layer filter, because the goal is to asses the mean impact on radiation for all cloud conditions. We 
assume that clouds are adiabatic with vertically constant droplet number concentrations and estimate the 
monthly averaged  C with (McCoy & Hartmann, 2015)
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Figure 2. Case study showing the impact of local emissions on cloud properties. (a) Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) true color image and (b) MODIS liquid cloud effective radius ( er ) retrieval on 
2016-08-29 at 22:15:10 UTC with clear areas indicating areas without liquid clouds. Black lines show shorelines and 
dark green dots mark oil wells. The case shows a change in cloud brightens and er  downwind of the eastern part of the 
Prudhoe Bay region where the emission inventory reports the highest sulfur dioxide emissions (Figure 1). For this case, 
ERA5 925 hPa wind direction at Oliktok Point was 95

o.
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following Lacis and Hansen (1974). The estimated mean SW  value is only applicable to the six months 
season covered by the observations (April–September). Assuming that SW  for winter months without 
observations is 0 W m−2, the SW  value representative for the full year would be reduced by 50%.

3. Results
Figure 3a shows how the mean cloud liquid droplet effective radius ( er ) is reduced in the Prudhoe Bay region 
in comparison to the reference area. The reduction of er  is not homogeneous in the Prudhoe Bay region and 
is strongest in the eastern part (up to 1.0 μm). The area with reduced er  expands about 100 km down-wind in 
accordance with the predominant Easterly wind direction. This is consistent with the location of the largest 
sulfur dioxide emissions according to the inventory (insert Figure 1). Because surface elevation in the area 
with reduced er  is below 50 m (insert Figure 1), we assume that the impact of lifting processes on these 
signatures can be neglected. Characterizing the spatial variability of er  change, the first and fifth percentiles 
of the 970 pixel in the Prudhoe Bay region are reduced 0.78 μm and 0.60 μm, respectively, but it should be 
noted that these values depend also on the boundaries used for the Prudhoe Bay region. The relatively small 
er  reduction is explained by the fact that the data is temporally averaged over all cases and a variety of cloud 

types and background aerosol concentrations. For individual cases, the er  reduction can be substantially 
larger as illustrated in Figure 2b.

To account for er  changes of individual cases, we also compared distributions of all MODIS cloud observa-
tions within the two regions, that is, temporal averaging is not applied (insert Figure 3a). For the Prudhoe 
Bay region, we find that the median er  is significantly (5% confidence interval, Mood's t-test) reduced by 
0.28 μm in comparison to the reference region. The comparison of the distributions of individual cases re-
veals that the er  reduction in the Prudhoe Bay region is stronger for the 75th percentile (0.44 μm difference 
between both regions) than for the 25th percentile (0.21 μm difference). This shows the higher susceptibility 
of rather pristine clouds with larger er  values with respect to changes related to localized pollution (Platnick 
& Twomey, 1994). Our results for er  are robust with respect to the chosen filtering and channel combination 
as shown in Text S2.

When limiting the analysis to times for which winds aligned with the predominant wind direction (60°–
110°, 36% of the total cases based on the fifth generation ECMWF atmospheric reanalyzes (ERA5) with 
30 km resolution (Copernicus Climate Change Service (C3S) 2017) at the 925 hPa level), the detected tem-
poral mean er  reduction becomes larger (up to 1.35 μm, Figure 3b) and the median of the distribution of all 
cloud observation is reduced by 0.41 μm. Spatially, the plume extends more than 200 km to 153° W Longi-
tude which corresponds to approximately 8 h of airmass lateral advection considering the ERA5 median 
925 hPa wind speed of 7 ms−1—consistent to the time scales reported by Gryspeerdt et al. (2021) for ship 
tracks. The plume generally does not extend to Utqiaġvik, even though it has been found that aerosol prop-
erties at Utqiaġvik are impacted by localized pollution 8% of the time (Kolesar et al., 2017).

To further support our hypothesis that observed changes of er  are connected to emissions from the Prudhoe 
Bay region, we leverage MODIS’ cloud top pressure (CTP) retrieval to subdivide the data set. This is done 
with the assumption that local emissions should more directly impact lower clouds than higher clouds, par-
ticularly given the stratified nature of the Arctic atmosphere. We assume that lower clouds, those with CTP 
 750 hPa (Figure 3c), have on average also lower cloud bases making them more susceptible for localized 
pollution effects. Indeed, low clouds show more pronounced reductions in er  around the Prudhoe Bay area 
( er  reduction up to 1.13 μm) than observed for the complete data set (Figure 3a).

To assess whether these changes in cloud microphysics alter cloud lifetime, we evaluated spatial patterns 
of cloud frequency of occurrence (CFO) from MODIS (Figure 4a). In the eastern part of the Prudhoe Bay 
region with largest sulfur dioxide emissions, individual pixels shows CFO values increased by 1–2 percent-
age points in comparison to the remaining Prudhoe Bay region. But it is unclear whether these are random 
effects, because potential signals related to localized pollution are overlayed by an 8 percentage point 
meridional CFO gradient that is observed for the whole study region. We are confident that the meridional 
gradient is not caused by an instrument artifact related to a change of mean VZA within the study area, 
because we removed data at high VZA and the remaining spatial variability of mean VZA is only 1.5°. Also, 
mean liquid water path (LWP, Figure 4b) of the identified liquid containing clouds shows a pronounced 
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Figure 3. (a) Spatial deviation of Moderate Resolution Imaging Spectroradiometer (MODIS) mean liquid cloud 
effective radius er  in comparison to a reference region (green quadrangle). The MODIS standard retrieval is used during 
periods without snow on the ground while the 1.6/2.1 μm retrieval is used for periods with snow cover. The normalized 
er  distributions for all observations in the Prudhoe Bay region (orange quadrangle) and the reference region are shown 

in the insert with the lines representing the median as well as the 25th and 75th percentiles. The gray circles indicate 
(from left to right) Utqiaġvik, Oliktok Point, and Deadhorse; black lines show shorelines. (b) as (a), but limited to the 
main wind direction defined as 60°–110° from ERA5 at 925 hPa at Oliktok Point. (c) as (a), but limited to clouds with 
MODIS’ cloud top pressure larger than 750 hPa. The medians of the distributions of the two regions are significantly 
different (5% confidence interval) for all three data sets.
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Figure 4. Spatial patterns of Moderate Resolution Imaging Spectroradiometer (MODIS) products showing (a) liquid 
containing cloud frequency of occurrence (CFO), (b) mean liquid water path (LWP), and (c) change in shortwave 
upwelling radiation SW  with respect to the reference region (green box). The embedded violin plots show the 
underlying normalized distributions for the study (orange) and reference (green) region with the lines representing 
the median as well as the 25th and 75th percentiles. Note that for CFO and SW , the distribution of monthly values is 
shown and the full (i.e., non averaged) data set is shown for LWP. Median values colored in black indicate a significant 
difference (5% confidence interval) between the medians of the two regions. The gray circles indicate (from left to right) 
Utqiaġvik, Oliktok Point, and Deadhorse; black lines show shorelines.
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LWP difference of 20  g m-2 between the pixels located close to the shore and in the southern parts of the 
study area. Contrasting to the meridional gradient for CFO, this gradient appears to be perpendicular to 
the coastline so that mean LWP values are almost identical for both regions. The coastal LWP gradient 
correlates with the orography (insert Figure 1) so that a connection to lifting processes seems a possible 
explanation. No LWP patterns are visible within the Prudhoe Bay region that are consistent with the loca-
tion of the strongest emissions. The strong regional gradients imply that we cannot asses whether there is 
an impact of localized emissions on CFO or LWP. However, our data allows to define an upper threshold 
for such effects. If there was a change in LWP and CFO, it must be smaller than the large scale variability 
observed within the Prudhoe Bay region. This indicates an upper limit for CFO and LWP changes related 
to localized emissions of approximately 2 percentage points and 5 g , respectively−2m.

Ultimately, any aerosol-induced changes to cloud micro- and macrophysical properties are important be-
cause of their combined impact on the Earth's energy budget. It is estimated that the decrease of er  leads 
to a mean enhancement of 0.03 W m−2 of SW  for the Prudhoe Bay region during the observation pe-
riod (April–September). The enhancement is not distributed homogeneously and individual pixels reach 
0.79  W m−2; the first and fifth percentiles are 0.53  W m−2 and 0.37  W m−2, respectively (Figure  4c). The 
distributions of monthly averaged SW  values also indicate the spatial variability with the 75th percentile 
featuring a larger change than the medians (see insert Figure 4c). The southern parts of the study area show 
a mean SW  of 0.4 to 0.2 W m−2 which is related to increased er  values in this region (Figure 3). The SW  
enhancement in the Prudhoe Bay region reduces radiation arriving at the surface, thereby resulting in a 
net cooling of the surface environment. However, this relatively small cooling could be further modulated 
by small changes in CFO below our detection threshold (e.g., 1 percentage points). Such changes would if 
positive, for all but peak summer months, result in a compensating effect to the aerosol cloud interaction 
influence on net radiative forcing, taking into account the typical longwave forcing of liquid-containing 
Arctic clouds, which can be up to 65 W m−2 (Shupe & Intrieri, 2004). The current analysis does not support 
the presence of any pollution-induced CFO change. This makes it challenging to come to firm conclusions 
about the ability of local sources of aerosol particles to drive CFO changes, and to determine if such even-
tual changes would compensate or enhance changes of SW .

4. Discussion
To evaluate the impact of anthropogenic aerosol particles on Arctic clouds an extended (14 years) time 
series of MODIS observations consisting of 14,755 overpasses during the polar day was analyzed. To our 
knowledge, the current study represents the first attempt to constrain the impact of anthropogenic emis-
sions on clouds existing in the clean Arctic background state using “natural laboratory” observations over a 
long time scale. While the mean observed signals are relatively small, the long observational period allowed 
for identification of the following patterns for the observational period (April–September):

1.  For liquid and mixed-phase clouds, liquid effective radius er  is reduced in the Prudhoe Bay by up to 1.0 
μm when averaging over the full data set (Figure 3). When limiting the data to easterly winds, the main 
wind direction, the reduction increases to up to 1.35 μm. For individual cases, the reduction in er  can be 
larger (Figure 2)

2.  For cloud frequency of occurrence (CFO) and liquid water path (LWP), pronounced regional gradients 
in CFO and LWP overlay potential local effects centered on the Prudhoe Bay area (Figures 4a and 4b). 
If there were such effects, they must be smaller than approximately 2 percentage points and 5  g −2m for 
CFO and LWP, respectively

3.  In combination, these anthropogenic aerosol impacts on cloud properties are estimated to result in a 
mean increase of upwelling shortwave radiation ( SW ) of up to 0.79 W m−2 for the April–September 
period (Figure 4c)

Despite the challenging conditions for MODIS retrievals for land pixels at high latitudes due to low solar 
zenith angles and bright surfaces (Grosvenor & Wood, 2014; King et al., 2004; Platnick et al., 2001), we 
found our results to be robust with respect to the applied filters and retrieval methods. Our findings are 
consistent with the theory of aerosol cloud interaction that enhanced CCN concentrations modify cloud 
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properties. Reduced cloud droplet sizes associated with elevated CCN concentrations are notable in the 
MODIS observations, but the question as to whether there is a small change in CFO or LWP related to lo-
calized pollution could not be answered with the available data and is left open for future studies. Answer-
ing this question is crucial to fully quantify the impact of localized pollution on the radiative budget. The 
found changes in er  and SW  are small in comparison to those often observed for ship tracks (e.g., up to 
4.1 μm according to Christensen & Stephens, 2011) but localized emissions do—unlike ships—not move so 
that even small er  can be locally highly relevant over time. In general, the exact value of the cloud response 
depends strongly on the methodological approach. This includes the question whether the polluted plume 
boundaries are well identified and compared with its pristine surroundings (Christensen & Stephens, 2011; 
Goren & Rosenfeld, 2014), and whether a climatological mean is estimated (Christensen & Stephens, 2011; 
Diamond et al., 2020) rather than an instantaneous effects (Goren & Rosenfeld, 2012, 2014). For instance, 
a case study approach focusing on well defined ship tracks showed a negative cloud radiative effect (CRE) 
of 4 W m−2 for ship tracks embedded within closed cells (Goren & Rosenfeld, 2014). In contrast, Diamond 
et al. (2020) provides a climatological estimate of 2 W m−2 due to cloud brightening within the southeast 
Atlantic shipping corridor.

It is important to note that the current approach likely underestimates the total impact on cloud radiative 
forcing because (a) optically thin clouds are not considered due to instrument limitations and (b) we use 
a surface estimate for SW  from CERES which is slightly more attenuated than the relevant SW  at cloud 
top (McCoy & Hartmann, 2015). Our SW  estimate is based only on er  change and does not account for 
potential LWP adjustments. A full assessment of the radiative impact is important to understanding the net 
impacts of industrial activities on the surface energy budget, ice and snow formation and melt, the subse-
quent controls imparted on terrestrial ecosystems, and the associated feedback mechanisms. Our SW  es-
timate is only applicable to the period covered by observations (April–September) and needs to be reduced 
by approximately 50% to be representative for a full year.

This study gives a first estimate on the types of cloud perturbations that might be possible in the future 
in other industrialized regions of the Arctic. In a future warmer, more easily accessible Arctic, industrial 
activities are expected to increase which is potentially leading to rising local-source aerosol concentrations. 
Assuming that industrial emissions related to oil extraction produce higher emission than other anthropo-
genic activities in the Arctic, this study provides an upper boundary for microphysical and radiative effects 
related to localized pollution. Additional work is required to fully understand the impact of localized pol-
lution on the ice phase of liquid containing clouds. This includes developing methods to reduce the uncer-
tainties of space-based cloud retrievals for optically thin clouds and analyzing data of the ground-based ob-
servations of the Department of Energy Atmospheric Radiation Measurement (DOE ARM) sites in Alaska.

Data Availability Statement
Datasets: MODIS data products (MOD06L2, MYD06L2, collection 6, Platnick & Ackerman, 2015a; Plat-
nick & Ackerman, 2015b) are available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measure-
ments/products/MOD06_gL2/ and https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/
products/MYD06_gL2/, respectively; IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km res-
olution (National Ice Center, 2008, updated daily) can be retrieved at https://nsidc.org/data/G02156/ver-
sions/1; the repository of the ARM-standard Meteorological Instrumentation at Surface (MET, Holdridge & 
Kyrouac, 1993) is at https://www.archive.arm.gov/discovery/#v/results/s/fdsc::met; ERA5 hourly data on 
pressure levels from 1979 to present (Copernicus Climate Change Service (C3S), 2017) is available at https://
cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6.
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